Business

Madison schools join the North Alabama Buildings Performance Challenge

MADISON, Ala. –  The Madison City Schools system is saving hundreds of thousands of dollars by being more conservative when it comes to energy use.

Now, they are going head to head with other businesses and organizations around Madison County to see just how much they can save on energy.

“It’s a voluntary effort where organizations and businesses from around north Alabama are committing to energy efficiency,” said Daniel Tait, CEO of Energy Alabama.

To continue reading the full article, please visit: http://whnt.com/2017/10/07/madison-schools-join-the-north-alabama-buildings-performance-challenge/

Perfect Utility Rate Design

6 Reasons Time of Use Rates Are the Best Option

Previously we discussed the pros and cons of the available utility use rates. In that post we mentioned that while none of the options are perfect we do have a favorite, so here’s

6 Reasons Time of Use Rates Are The Best Option

 

  1. Time of Use (TOU) Rates will lower your bill.

With some simple adjustments to your electricity use habits, you would save a significant amount of money with TOU rates versus standard consumption rates.

  1. A true Time of Use Rate system wouldn’t charge any unwarranted fees.

Utilities are notorious for trying to increase fixed charges and fees. With a true TOU rate, you are only charged for the amount of electricity you consumed (based on when you used it) with no extraneous charges.

  1. Time of Use Rates rates encourage the use of solar.

The current system for most utilities across the country charges a “fixed rate,” meaning you are charged that rate regardless of the amount of electricity you use. Without these fixed charges, TOU rates can encourage the use of solar, especially if the peak rates are during daylight hours.

  1. Time of Use Rates can be available to everybody, whether you’re a business owner or a resident.

Additionally, in most states, TOU rates are already available on a voluntary basis.

  1. Time of Use Rates are good for the consumer and the utility.

If implemented properly, TOU rates are directly related to when the system (e.g., the grid) experiences the most cost. By changing your behaviors, you’re not only saving money but also helping the entire system.

  1. There’s only one downside.

Many don’t know of – or have not seen the benefits of – TOU rates. As such, consumer education would be the greatest barrier for getting TOU rates off the ground. Consumers would need to be educated on how they can actually save money with TOU rates – because, unfortunately, you would not be able to switch to TOU rates and have your bill magically decrease. Saving money with TOU rates would require some work on the part of the consumer. Here are a few things that you would have to do to save more money with TOU rates:

  • Plug devices such as computers, televisions, game
  • consoles, and printers into power strips and turn off the switch when these devices are not in use during peak demand hours.
  • Program your AC/heater to not run as much during peak hours.
  • Use your washer and dryer during non-peak times.
  • Install automatic timers to only run your water heater during non-peak times (trust us, you’ll still have plenty of hot water).
  • Use solar during peak demand hours!

With some careful alteration of your electricity habits, most consumers would save hundreds of dollars a year on electricity with TOU rates compared to standard consumption charges. TOU rates are good for utilities and your electricity bill – and all that’s needed is to get the word out.

Perfect Utility Rate Design

Does a Perfect Rate Design Exist?

Does a Perfect Utility Rate Design Exist?

The simple answer: no. There is no perfect rate design, as there are up and downsides to each. However, we believe there is a best option, and we’ll talk about that in a later blog post. For now, let us analyze the positives and negatives of each of the three main types of rate designs. If you need a refresher on the often-confusing world of rate design, check out our blog post on the topic.

Fixed Charges and Consumption Charges – In many ways, this rate design seems like it would be the most ideal, especially for residential consumers. Your monthly charge would consist of a fixed charge, the charge of being connected to the utility, and a consumption charge based on how much electricity you used during the billing period. Seems great, right? You pay for electricity you use, along with a fixed charge, and don’t pay for electricity you didn’t use. Simple! Well, as it turns out, the word “fixed” is not so fixed… It’s really a relative term.

Recently, Alabama Power has started a “pilot program” that exponentially hikes the fixed charge rate (up to 400 percent!). For now, the rate increase is voluntary and experimental, but it forebodes of future substantial rate inflation. Even now, many utilities across the country are actively trying to increase fixed rates. Fixed charges are generally thought to be bad for consumers because they discourage energy efficiency and renewable energy and are liable to increase without warning (check out our blog post on fixed charges!).

Time of Use (TOU) – Most simply, TOU rates charge customers prices based on the time of day in which the energy is consumed. When the grid is congested, the prices goes up, and when there is plenty of excess electricity available, the prices goes down. This system could encourage energy conservation and efficiency by motivating customers to use electricity outside of peak demand times and to conserve it inside peak demand times. Additionally, no fixed charge means more freedom and incentive to conserve energy. The only downside to this system resides in the amount of customer education it would require, such as learning how to use other means of energy consumption (like solar!) or simply remembering not to consume as much energy during the specified times. Most customers are not used to being charged this way and would need time to adjust.

Peak Demand Charges – Because of the hiked charge on peak usages, this rate design encourages customers to not make large, instantaneous demands on the system, no matter the time of day. This rate design is typically reserved for commercial consumers where it is oftentimes necessary or unavoidable to use large amounts of electricity at one time. Of course, there are ways to somewhat decrease high peak demand charges (such as installing solar if you have a daytime peak or spacing out electricity use more smoothly), but the rate design is still imperfect. Peak demand charges, then, can be a good, sensible idea but tend to be impractical in the sense that each customer’s individual peak isn’t always as necessary as the system’s overall needs.

Choosing the right rate design is difficult; each one presents its own challenge to overcome. The question to ask when pondering the plethora of rate design options is “Which one is best, not easiest, for the energy sector?” We’ll leave you with that hint until the final blog post in this series, where we will explain in detail why we believe a certain rate design is the best.

The Importance of Reducing Solar Soft Costs

What are solar soft costs? Soft costs are any costs, fees, or taxes that are included with a product after material and labor. While solar energy is worthwhile, thanks to the long term savings and the benefits for the environment, many potential users are hesitant at first due to the initial cost. A significant portion of the heavy sticker price is the “extra” added when taking soft costs into account.

Solar is becoming more prevalent in America, and many users are beginning to see their investment come to fruition. Unfortunately, many potential users are halted before they get started; so let’s look at some of the soft costs and how they could be reduced.

Courtesy of U.S. Department of Energy

As the graph shows, a massive 64% of the cost of solar is due to soft costs. Costs like permitting fees, interconnection labor, installation labor, and installer profit are significant portions of the soft costs, but are also necessary. The solar system needs to be approved by the city (permitting fee), connected to the grid (interconnection labor), installed (installation labor), and the company selling it needs to make some profit to stay open and continue selling their product (installer profit). However, most of the other costs could be trimmed down so there isn’t as much of a cost for each one.

The other portions of soft cost: sales tax, transaction costs, supply chain costs, indirect corporate costs, and customer acquisition, CAN be reduced, sometimes to virtually nothing. Some states actually pay the solar user, through stipends or other incentives, to install rather than charge sales tax; therefore, sales tax could be done away with or reworked so the user gets that cost back. In fact, some states like Florida, do not charge sales tax on renewable energy, effectively eliminating this soft cost.

Transaction costs are costs that come from a third-party lender when the buyer needs a loan and could be reduced to a lower rate. We find that buyers need to be aware of the hidden fees and transactions costs that can quickly add significant cost to their installation. Some transaction costs are unavoidable and more than fair. After all, no one is going to loan you money at 0% interest. That being said, be aware of who is charging what fees and where they’re being charged in the process. Supply chain costs are from the transporting and housing of solar units from the company to the buyer. Better supply chain management and cooperative buying can help reduce this cost.

Lastly, and probably most interestingly, customer acquisition is the cost for the solar installer to reach out and connect its potential customers. This cost is effectively sales and marketing; and while it’s a necessary function, you can immediately see the issue. If hundreds of people contact their local solar installer only to be turned away because of bad site conditions, not being able to finance the system, or any number of reasons, the solar contractor has spent money on a customer that ultimately cannot buy its product. That means this cost must be charged to the next customer who CAN purchase the system. The U.S. Department of Energy and many startups around the country are developing tools explicitly designed to attack this problem. The more information at the fingertips of consumers and contractors helps reduce the amount of time spent on projects that just simply could never be built.

A good way to think of solar installation with lower soft costs is to merely look overseas. Germany is one example of solar installation working without high soft costs and their wide user base is proof it’s effective. By making solar more available (cheaper), Germany has a much bigger user base than the United States and they see more users every year. Although the process of buying solar is different in Germany, they immediately provide savings by getting rid of most soft costs from the start.

Let’s not handicap solar right out of the gate. By working to significantly reduce soft costs, we can make solar more affordable for everyday Alabamians. Quite literally, giving them the power back.

Battery Storage and Ancillary Services

Ancillary services by definition are services that support the transmission of electricity from its generation site to the customer or helps maintain its usability throughout the system. Many people may not know that the standard 120 volts we are used to receiving from the wall actually varies a tiny amount from second to second. If you were to monitor the power from the wall, the voltage may swing from 118-122 volts. We do not typically think about the mechanisms that take place to keep our power useful and ready for when we flip the switch.

On a larger scale, ancillary services are generators or other service providers that are synchronized to the grid and are able to rapidly increase output in three major categories: contingency, regulation, and flexibility reserves. The contingency reserve requirement is assumed to be constant for all hours of the year and corresponds to a spinning reserve equal to about 3% of peak load and about 4.5% of the average load. Another way to think of “spinning reserves” are the backup or redundancy built into the grid. Basically, we slightly overbuild the total generation needed so the grid can be provided with ancillary services making good quality power possible.

Additionally, regulation and flexibility reserve requirements vary by hour based on the net load and impact of variability and uncertainty of wind and solar. The availability and constraints of individual generators to provide reserves are a major source of the cost of providing reserves. Not all generators are capable of providing certain regulation reserves based on operational practice or lack of necessary equipment to follow a regulation signal.

So, what does the future of ancillary services hold and how can they be more beneficial?

At a residential level, a combination of solar and storage is only worthwhile when specific conditions are met that make the value of storage greater than the cost of installing It. For example, when the renewable energy creates an excess, the extra energy can be stored for later consumption. This would allow the customer to buy less power from the grid and enable them to cut their costs.

However, some customers are now being charged for using power during peak times, which is known as a demand charge. Energy storage can be used to lower peak time energy consumption, or the highest amount of power a customer draws from the grid; therefore, reducing the amount customers spend on demand charges. In North America, the break-even point for most demand charges is $9 per kilowatt. Energy storage can lower that cost to $4 or $5 per kilowatt by as early as 2020. As storage costs decrease, more customers will begin to see economic benefits and existing storage users will see the optimum size of energy storage increase.

Lastly, energy storage will impact electricity grids as a whole because it provides more function than just power on demand. Batteries can provide the grid with ancillary services like frequency regulation and should be compensated to do so. All this is to say, if utilities provide appropriate price signals to the market, customers will respond by installing battery storage where and how they can be compensated.

Currently, grids experience a continuous imbalance between the power they produce and its consumption because of the millions of devices that are turned on and off in an unrelated way. The imbalance can cause frequencies to deviate, which can affect equipment and potentially hurt the stability of the grid. Energy storage is well suited for frequency regulation because of its rapid response time and its ability to charge and discharge efficiently. This storage could significantly reduce the amount and cost of the reserves currently needed to provide such services to the grid.

One reason for the optimistic outlook on battery storage’s role with providing ancillary services is the progress lithium ion batteries have made in recent years. In 2015, lithium-ion batteries were responsible for 95 percent of energy storage at both the residential and grid levels. The reason for the increase in popularity is due to the price dropping, safety improving, and better performance characteristics. All of these qualities are leading to lithium-ion batteries being suitable for stationary energy storage across the grid; ranging from large-scale installations and transmission infrastructure to individual and residential use, even without being appropriately compensated for ancillary services.

The most important aspect is the large-scale deployment of energy storage that could overturn the status quo for many electricity markets. In developed countries, central or bulk generation traditionally has been used to satisfy instantaneous demand, with ancillary services helping to smooth out discrepancies between generation and load; and energy storage is well suited to provide such ancillary services. Eventually, as costs fall, it could move beyond that role, providing more and more power to the grid, displacing plants; however, that time has not yet come although approaching quickly. It is important to recognize that energy storage has the potential to upend the industry structures, both physical and economic, that have defined power markets for the last century or more.